EE 330 Lecture 11

Contacts and Metallization
Resistance and Capacitance in Interconnects

Fall 2024 Exam Schedule

Exam 1 Friday Sept 27

IC Fabrication Technology

- Crystal Preparation
- Masking
- Photolithographic Process
- Deposition
- Ion Implantation
- Etching
- Diffusion
- Oxidation
- Epitaxy
- Polysilicon
- Planarization
- Contacts, Interconnect and Metallization

Contacts, Interconnect and Metallization

- Contacts (vias) used to identify where vertically stacked layers connect
- Contacts (vias) used to identify which vertically stacked layers connect
- Term "vias" usually refers to metal-metal connections and "contact" where one layer is not metal
- Contacts and vias usually of a fixed size
 - All etches reach bottom at about the same time
 - Multiple contacts widely used (to reduce resistance)
 - Contacts not allowed to Poly on thin oxide in most processes
 - Dog-bone often needed for minimum-length devices
 - Vias usually only allowed between adjacent metal layers

Acceptable Metal-Poly Contact

Vulnerable to pin holes (usually all contacts are same size)

Acceptable Metal-Poly Contact

Design Rule Violation

Common Circuit Connection

Standard Interconnection

Buried Contact

Can save area but not allowed in many processes

Vias

Metalization

- Aluminum widely used for interconnect
- Copper often replacing aluminum in recent processes
- Must not exceed maximum current density
 - around 1ma/u for aluminum and copper
- Ohmic Drop must be managed
- Parasitic Capacitances must be managed
- Interconnects from high to low level metals require connections to each level of metal
- Stacked vias permissible in some processes

Metalization

Aluminum

- Aluminum is usually deposited uniformly over entire surface and etched to remove unwanted aluminum
- Mask is used to define area in photoresist where aluminum is to be removed

Copper

- Plasma etches not effective at removing copper because of absence of volatile copper compounds
- Barrier metal layers needed to isolate silicon from migration of copper atoms
- Damascene or Dual-Damascene processes used to pattern copper

Consider Metal 1 (lowest level of metal)

- Will contact to n-active
- Consider process with LOCOS

Consider Metal 1 (lowest level of metal)

- Will contact to n-active
- Consider process with LOCOS

Consider Metal 1 (lowest level of metal)

Contact Opening after SiO₂ etch

After Photoresist Removed

Consider Metal 1 (lowest level of metal)

Metal Applied to Entire Surface

Consider Metal 1 (lowest level of metal)

Consider Metal 1 (lowest level of metal)

Copper Interconnects

Limitations of Aluminum Interconnects

- Electromigration
- Conductivity not real high

Relevant Key Properties of Copper

- Reduced electromigration problems at given current level
- Better conductivity

Challenges of Copper Interconnects

- Absence of volatile copper compounds (can not use plasma etch)
- Copper diffuses into surrounding materials (barrier metal required)

			remperat	
Material ≑	ρ (Ω·m) at 20 °C	σ (S/m) at 20 °C	coefficient [[] (K ⁻¹)	
Carbon (graphene)	1.00 × 10 ⁻⁸	1.00 × 10 ⁸	-0.0002	
Silver	1.59 × 10 ⁻⁸	6.30 × 10 ⁷	0.0038	
Copper	1.68 × 10 ⁻⁸	5.96 × 10 ⁷	0.003862	
Annealed copper ^[note 2]	1.72 × 10 ⁻⁸	5.80 × 10 ⁷	0.00393	
Gold ^[note 3]	2.44 × 10 ⁻⁸	4.10 × 10 ⁷	0.0034	
Aluminium ^[note 4]	2.82 × 10 ⁻⁸	3.50 × 10 ⁷	0.0039	
Calcium	3.36 × 10 ⁻⁸	2.98 × 10 ⁷	0.0041	
Tungsten	5.60 × 10 ⁻⁸	1.79 × 10 ⁷	0.0045	
Zinc	5.90 × 10 ⁻⁸	1.69 × 10 ⁷	0.0037	
Nickel	6.99 × 10 ⁻⁸	1.43 × 10 ⁷	0.006	
Lithium	9.28 × 10 ⁻⁸	1.08 × 10 ⁷	0.006	
Iron	9.71 × 10 ⁻⁸	1.00 × 10 ⁷	0.005	
Platinum	1.06 × 10 ⁻⁷	9.43 × 10 ⁶	0.00392	
Tin	1.09 × 10 ⁻⁷	9.17 × 10 ⁶	0.0045	
Carbon steel (1010)	1.43 × 10 ⁻⁷	6.99 × 10 ⁶		

Source: Sept 13, 2017

Lead	2.20 × 10 ⁻⁷	4.55 × 10 ⁶	0.0039
Titanium	4.20 × 10 ⁻⁷	2.38 × 10 ⁶	0.0038
Grain oriented electrical steel	4.60 × 10 ⁻⁷	2.17 × 10 ⁶	10000
Manganin	4.82 × 10 ⁻⁷	2.07 × 10 ⁶	0.000002
Constantan	4.90 × 10 ⁻⁷	2.04 × 10 ⁶	0.000008
Stainless steel ^[note 5]	6.90 × 10 ⁻⁷	1.45 × 10 ⁶	0.00094
Mercury	9.80 × 10 ⁻⁷	1.02 × 10 ⁶	0.0009
Nichrome ^[note 6]	1.10 × 10 ⁻⁶	6.7 × 10 ⁵	0.0004
GaAs	1.00×10^{-3} to 1.00×10^{8}	1.00×10^{-8} to 10^3	
Carbon (amorphous)	5.00 × 10 ⁻⁴ to 8.00 × 10 ⁻⁴	1.25×10^3 to 2×10^3	-0.0005
Carbon (graphite) ^[note 7]	2.50×10^{-6} to 5.00×10^{-6} basal plane 3.00×10^{-3} basal plane	2.00×10^5 to 3.00×10^5 basal plane 3.30×10^2 basal plane	
PEDOT:PSS	2 × 10 ⁻⁶ to 1 × 10 ⁻¹	1 × 10 ¹ to 4.6 × 10 ⁵	?
Germanium ^[note 8]	4.60 × 10 ⁻¹	2.17	-0.048
Sea water ^[note 9]	2.00 × 10 ⁻¹	4.80	
Swimming pool water ^[note 10]	3.33×10^{-1} to 4.00×10^{-1}	0.25 to 0.30	

Silicon ^[note 8]	6.40 × 10 ²	1.56 × 10 ⁻³	-0.075
Wood (damp)	1.00×10^3 to 1.00×10^4	10 ⁻⁴ to 10 ⁻³	
Deionized water ^[note 12]	1.80 × 10 ⁵	5.50 × 10 ⁻⁶	
Glass	1.00×10^{11} to 1.00×10^{15}	10 ⁻¹⁵ to 10 ⁻¹¹	?
Hard rubber	1.00 × 10 ¹³	10 ⁻¹⁴	?
Wood (oven dry)	1.00×10^{14} to 1.00×10^{16}	10 ⁻¹⁶ to 10 ⁻¹⁴	
Sulfur	1.00 × 10 ¹⁵	10 ⁻¹⁶	?
Air	1.30×10^{14} to 3.30×10^{14}	3×10^{-15} to 8×10^{-15}	
Carbon (diamond)	1.00 × 10 ¹²	~10 ⁻¹³	
Fused quartz	7.50 × 10 ¹⁷	1.30 × 10 ⁻¹⁸	?
PET	1.00 × 10 ²¹	10 ⁻²¹	?
Teflon	1.00×10^{23} to 1.00×10^{25}	10 ⁻²⁵ to 10 ⁻²³	?

Copper Interconnects

Practical methods of realizing copper interconnects took many years to develop

Copper interconnects widely used in some processes today

Consider Metal 1 (lowest level of metal)

Damascene Process

Consider Metal 1 (lowest level of metal)

Damascene Process

Contact Opening after SiO₂ etch

Consider Metal 1 (lowest level of metal)

Damascene Process

W has excellent conformality when formed from WF₆

Applied with CVD $WF_6+3H_2 \rightarrow W+6HF$

Chemical-Mechanical Planarization (CMP)

- Polishing Pad and Wafer Rotate in non-concentric pattern to thin, polish, and planarize surface
- Abrasive/Chemical polishing
- Depth and planarity are critical

Acknowledgement:

http://en.wikipedia.org/wiki/Chemical-mechanical_planarization

Consider Metal 1 (lowest level of metal)

Damascene Process

Consider Metal 1 (lowest level of metal)

Damascene Process

After first CMP Step

Oxidation

Consider Metal 1 (lowest level of metal)

Damascene Process

Photoresist Patterned with Metal Mask Defines Trench

Consider Metal 1 (lowest level of metal)

Damascene Process

Consider Metal 1 (lowest level of metal)

Damascene Process

Consider Metal 1 (lowest level of metal)

(Barrier metal added before copper to contain the copper atoms)

Consider Metal 1 (lowest level of metal)

Damascene Process

Consider Metal 1 (lowest level of metal)

Damascene Process **CMP Target Copper Deposition** W-plug

Copper is deposited or electroplated (Barrier Metal Used for Electroplating Seed)

Consider Metal 1 (lowest level of metal)

Consider Metal 1 (lowest level of metal)

Dual-Damascene Process

Consider Metal 1 (lowest level of metal)

Consider Metal 1 (lowest level of metal)

Dual-Damascene Process

Barrier Metal (used for electroplating seed)

Consider Metal 1 (lowest level of metal)

Dual-Damascene Process

Copper is deposited or electroplated (Barrier Metal Used for Electroplating Seed)

Consider Metal 1 (lowest level of metal)

Consider Metal 1 (lowest level of metal)

Both Damascene Processes Realize Same Structure Damascene Process

Two Dielectric Deposition Steps
Two CMP Steps
Three Metal Deposition Steps
Two Dielectric Etches
W-Plug

Dual-Damascene Process

One Dielectric Deposition Step Two CMP Steps Two Metal Deposition Steps Two Dielectric Etches Via formed with metal step

Multiple Level Interconnects

3-rd level metal connection to n-active without stacked vias

Multiple Level Interconnects

3-rd level metal connection to n-active with stacked vias

Interconnect Layers May Vary in Thickness or Be Mostly Uniform

Layer	t (nm)	w(nm)	s(nm)	AR		
6	1720	860	860	2.0		†
	1000					
5	1600	800	800	2.0		
	1000					
4	1080	540	540	2.0		12.5µ
	700				ra ei	12.5µ
3	700 700	320	320	2.2		
2	700	320	320	2.2	пп	
	700				D 0	
1	480	259	250	1.9	Q Q	
	800					♦
	1				Substrate	

Fig 4.31 Layer stack for 6-metal Intel 180 nm process

Interconnects

- Metal is preferred interconnect
 - Because conductivity is high
- Parasitic capacitances and resistances of concern in all interconnects
- Polysilicon used for short interconnects
 - Silicided to reduce resistance
 - Unsilicided when used as resistors
- Diffusion used for short interconnects
 - Parasitic capacitances are high

Interconnects

- Metal is preferred interconnect
 - Because conductivity is high
- Parasitic capacitances and resistances of concern in all interconnects
 - Polysilicon used for short interconnects
 - Silicided to reduce resistance
 - Unsilicided when used as resistors
 - Diffusion used for short interconnects
 - Parasitic capacitances are high

H << W and H << L in most processes
Interconnect behaves as a "thin" film
Sheet resistance often used instead of conductivity to characterize film

$$R_{\Box} = \rho/H$$

$$R=R_{\square}[L/W]$$

$$R=R_{\square}[L/W]$$

The "Number of Squares" approach to resistance determination in thin films

The "squares" approach is not exact but is good enough for calculating resistance in almost all applications

In this example:

$$N_{\rm S}$$
=12+.55+.7=13.25

Example:

The layout of a film resistor with electrodes A and B is shown. If the sheet resistance of the film is $40 \ \Omega/\Box$, determine the resistance between nodes A and B.

Solution

$$N_S = 9 + 9 + 3 + 2(.55) = 22.1$$

$$R_{AB} = R_{\Box} N_{S} = 40x22.1 = 884\Omega$$

Resistance in Interconnects (can be used to build resistors!)

- Serpentine often used when large resistance required
- Polysilicon or diffusion often used for resistor creation
- Effective at managing the aspect ratio of large resistors
- May include hundreds or even thousands of squares

Resistance in Interconnects (can be used to build resistors!)

Capacitance in Interconnects

 $C=C_DA$

C_D is the capacitance density and A is the area of the overlap (actually there is also a small fringe capacitance that has been neglected)

Capacitance in Interconnects

$$C = C^D A$$

fringe capacitances denoted by C_{F1} , C_{F2} , C_{F3} and C_{F4}

 $C_F = C_{F1} + C_{F2} + C_{F3} + C_{F2}$ is usually small compared to C

Capacitance in Interconnects

Equivalent Circuit

$$C_{12} = CD_{12}A_5$$
 $C_{1S} = CD_{1S}(A_1 + A_2 + A_5)$
 $C_{2S} = CD_{2S}(A_3 + A_4)$

Example

Two metal layers, Metal 1 and Metal 2, are shown. Both are above field oxide. Determine the capacitance between Metal 1 and Metal 2. Assume the process has capacitance densities from M_1 to substrate of .05fF/u², from M_1 to M_2 of .07fF/u² and from M_2 to substrate of .025fF/u².

Example

Solution

The capacitance density from M_1 to M_2 is .07fF/u²

$$C_{12} = A_{C1C2} \cdot C_{D12} = 400 \mu^2 \cdot 0.07 fF/\mu^2 = 28 fF$$

Capacitance and Resistance in Interconnects

 See MOSIS WEB site for process parameters that characterize parasitic resistances and capacitances

www.mosis.org

MOSIS WAFER ACCEPTANCE TESTS

RUN: T6AU TECHNOLOGY: SCN05

Run type: SKD

VENDOR: AMIS

FEATURE SIZE: 0.5 microns

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: American Microsystems, Inc. C5

TRANSISTOR	PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM		3.0/0.6			
Vth			0.79	-0.92	volts
SHORT		20.0/0.6			
Idss			446	-239	uA/um
Vth			0.68	-0.90	volts
Vpt			10.0	-10.0	volts
WIDE		20.0/0.6			
Ids0			< 2.5	< 2.5	pA/um
LARGE		50/50			
Vth			0.68	-0.95	volts
Vjbkd			10.9	-11.6	volts
Ijlk			<50.0	<50.0	pA
Gamma			0.48	0.58	V^0.5
K' (Uo*Cox	k/2)		56.4	-18.2	uA/V^2
Low-field			463.87	149.69	·

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameter XL in your SPICE model card.

Design Technology XL (um) XW (um)

SCMOS_SUBM (lambda=0.30) SCMOS (lambda=0.35)

0.10

0.00

FOX TRANSISTORS	GATE	N+ACTIVE	P+ACTIVE	UNITS
Vth	Poly	>15.0	<-15.0	volts

PROCESS PARAMETERS POLY PLY2 HR POLY2 UNITS P+ M2 999 Sheet Resistance 44.2 0.09 0.10 ohms/sq 83.5 105.3 23.5 Contact Resistance 64.9 149.7 17.3 29.2 0.97 ohms Gate Oxide Thickness 142 angstrom

 PROCESS PARAMETERS
 M3 N\PLY N_W
 UNITS

 Sheet Resistance
 0.05 824 816 ohms/sq

 Contact Resistance
 0.79 ohms

COMMENTS: N\POLY is N-well under polysilicon.

Note: substrate for p+ is the n-well

CAPACITANCE PARAMETERS	N+	P+	POLY	POLY2	M1	M2	мз	N W	UNITS
Area (substrate)	425	731	84		27	12	7	37	aF/um^2
Area (N+active)			2434		35	16	11		aF/um^2
Area (P+active)			2335						aF/um^2
Area (poly)				938	56	15	9		aF/um^2
Area (poly2)					49				aF/um^2
Area (metal1)						31	13		aF/um^2
Area (metal2)							35		aF/um^2
Fringe (substrate)	344	238			49	33	23		aF/um
Fringe (poly)					59	38	28		aF/um
Fringe (metal1)						51	34		aF/um
Fringe (metal2)							52		aF/um
Overlap (N+active)			232						aF/um
Overlap (P+active)			312						aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	2.02	volts
Vinv	1.5	2.28	volts
Vol (100 uA)	2.0	0.13	volts

2.0 Voh (100 uA) 4.85 volts Vinv 2.0 2.46 volts 2.0 Gain -19.72 Ring Oscillator Freq. 95.31 MHz DIV256 (31-stq,5.0V) D256 WIDE (31-stg,5.0V) 147.94 MHz Ring Oscillator Power DIV256 (31-stg,5.0V) 0.49 uW/MHz/gate D256 WIDE (31-stg,5.0V) 1.01 uW/MHz/gate

COMMENTS: SUBMICRON

+DELTA

= 0.01

□ T6AU SPICE BSIM3 VERSION 3.1 PARAMETERS

SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8

RSH

* DATE: Jan 11/07 * LOT: T6AU WAF: 7101 * Temperature parameters=Default .MODEL CMOSN NMOS (LEVEL = 49 +VERSION = 3.1TNOM = 27 TOX = 1.42E-8+XJ = 1.5E-7 NCH = 1.7E17 VTHO = 0.629035K2 +K1 K3 = 0.8976376 = -0.09255= 24.0984767 +K3B = -8.2369696 WO = 1.041146E-8 NLX = 1E-9+DVTOW = 0DVT1W = 0DVT2W = 0= 2.7123969 +DVT0 DVT1 = 0.4232931 DVT2 = -0.1403765= 451.2322004 UB +00 UA = 3.091785E-13 = 1.702517E-18+UC = 1.22401E-11 VSAT = 1.715884E5 A0 = 0.6580918+AGS = 0.130484 B0 = 2.446405E-6 B1 = 5E-6+KETA = -3.043349E-3A1 = 8.18159E-7 A2 = 0.3363058+RDSW PRWG PRWB = 1.367055E3 = 0.0328586 = 0.0104806+WR = 1 WINT = 2.443677E-7 LINT = 6.999776E-8+XL = 1E-7XW DWG = 0= -1.256454E-8+DWB = 3.676235E-8 VOFF = -1.493503E-4 NFACTOR = 1.0354201+CIT CDSC = 0= 2.4E-4CDSCD = 0+CDSCB = 0ETA0 = 2.342963E-3 ETAB = -1.5324E-4+DSUB = 0.0764123 PCLM PDIBLC1 = 0.8187825= 2.5941582 +PDIBLC2 = 2.366707E-3PDIBLCB = -0.0431505DROUT = 0.9919348PSCBE2 = 3.238266E-4PVAG +PSCBE1 = 6.611774E8= 0

= 83.5

MOBMOD = 1

```
+PRT
                           UTE
                                   = -1.5
                                                     KT1
                                                              = -0.11
         = 0
+KT1L
         = 0
                           KT2
                                   = 0.022
                                                      UA1
                                                              = 4.31E-9
+UB1
                           UC1
                                   = -5.6E-11
                                                     AΤ
         = -7.61E-18
                                                              = 3.3E4
+WL
         = 0
                           WLN
                                   = 1
                                                     WW
                                                              = 0
+WWN
         = 1
                           WWL
                                   = 0
                                                     LL
                                                              = 0
+LLN
         = 1
                           LW
                                   = 0
                                                     LWN
                                                              = 1
+LWL
         = 0
                           CAPMOD
                                   = 2
                                                     XPART
                                                              = 0.5
+CGDO
                           CGSO
                                                      CGBO
         = 2.32E-10
                                   = 2.32E-10
                                                              = 1E-9
+CJ
         = 4.282017E-4
                                   = 0.9317787
                                                     MJ
                                                              = 0.4495867
                           PB
+CJSW
         = 3.034055E-10
                           PBSW
                                   = 0.8
                                                     MJSW
                                                              = 0.1713852
+CJSWG
         = 1.64E-10
                           PBSWG
                                   = 0.8
                                                     MJSWG
                                                              = 0.1713852
                           PVTHO
+CF
         = 0
                                   = 0.0520855
                                                      PRDSW
                                                              = 112.8875816
                           WKETA
                                                     LKETA
+PK2
         = -0.0289036
                                   = -0.0237483
                                                              = 1.728324E-3
                                                                                 )
                                                     LEVEL
.MODEL CMOSP PMOS (
                                                              = 49
+VERSION = 3.1
                           TNOM
                                   = 27
                                                      TOX
                                                              = 1.42E-8
                           NCH
                                                     VTHO
+XJ
         = 1.5E-7
                                   = 1.7E17
                                                              = -0.9232867
+K1
                           K2
                                                     кз
         = 0.5464347
                                   = 8.119291E-3
                                                              = 5.1623206
+K3B
                                                     NLX
                                                              = 5.772187E-8
         = -0.8373484
                           WO
                                   = 1.30945E-8
+DVTOW
                                                     DVT2W
         = 0
                           DVT1W
                                   = 0
                                                              = 0
+DVT0
                           DVT1
                                                     DVT2
         = 2.0973823
                                   = 0.5356454
                                                              = -0.1185455
+U0
         = 220.5922586
                           UA
                                   = 3.144939E-9
                                                     UΒ
                                                              = 1E-21
+UC
                           VSAT
                                                              = 0.8441929
         = -6.19354E-11
                                   = 1.176415E5
                                                     A0
+AGS
         = 0.1447245
                           B0
                                   = 1.149181E-6
                                                     В1
                                                              = 5E-6
+KETA
         = -1.093365E-3
                           A1
                                   = 3.467482E-4
                                                     A2
                                                              = 0.4667486
+RDSW
         = 3E3
                           PRWG
                                                              = -0.0212201
                                   = -0.0418549
                                                      PRWB
+WR
         = 1
                           WINT
                                                     LINT
                                                              = 1.040439E-7
                                   = 3.007497E-7
+XL
         = 1E-7
                           XW
                                   = 0
                                                     DWG
                                                              = -2.133809E-8
+DWB
                                                     NFACTOR = 0.9468597
         = 1.706031E-8
                           VOFF
                                   = -0.0801591
+CIT
         = 0
                           CDSC
                                   = 2.4E-4
                                                      CDSCD
                                                              = 0
                                                     ETAB
+CDSCB
         = 0
                           ETA0
                                   = 0.4060383
                                                              = -0.0633609
+DSUB
                           PCLM
         = 1
                                   = 2.2703293
                                                      PDIBLC1 = 0.0279014
                           PDIBLCB = -0.057478
+PDIBLC2 = 3.201161E-3
                                                     DROUT
                                                              = 0.1718548
                           PSCBE2 = 5E-10
+PSCBE1
        = 4.876974E9
                                                      PVAG
                                                              = 0
+DELTA
         = 0.01
                           RSH
                                   = 105.3
                                                     MOBMOD
                                                              = 1
+PRT
         = 0
                           UTE
                                   = -1.5
                                                     KT1
                                                              = -0.11
+KT1L
                           KT2
                                                      UA1
         = 0
                                   = 0.022
                                                              = 4.31E-9
+UB1
                           UC1
         = -7.61E-18
                                   = -5.6E-11
                                                     AΤ
                                                              = 3.3E4
+WL
         = 0
                           WLN
                                   = 1
                                                     WW
                                                              = 0
+WWN
         = 1
                           wwr
                                   = 0
                                                     _{\rm LL}
                                                              = 0
         = 1
                           LW
+LLN
                                   = 0
                                                     LWN
                                                              = 1
+LWL
         = 0
                           CAPMOD
                                   = 2
                                                     XPART
                                                              = 0.5
+CGDO
         = 3.12E-10
                           CGSO
                                   = 3.12E-10
                                                      CGBO
                                                              = 1E-9
```

```
+CJ
                      PB
                             = 0.9682229
                                            MJ
       = 7.254264E-4
                                                    = 0.4969013
                      PBSW
                             = 0.99
+CJSW
       = 2.496599E-10
                                             MJSW
                                                    = 0.386204
       = 6.4E-11
                                                    = 0.386204
+CJSWG
                      PBSWG
                              = 0.99
                                            MJSWG
+CF
       = 0
                      PVTH0
                            = 5.98016E-3
                                            PRDSW
                                                    = 14.8598424
+PK2
                      WKETA = 7.286716E-4
                                            LKETA
                                                    = -4.768569E-3
       = 3.73981E-3
```

*

MOSIS WAFER ACCEPTANCE TESTS

RUN: T4BK (MM NON-EPI THK-MTL)

TECHNOLOGY: SCN018

VENDOR: TSMC FEATURE SIZE: 0.18 microns

INTRODUCTION: This report contains the lot average results obtained by MOSIS

from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar

measurements on a selected wafer are also attached.

COMMENTS: DSCN6M018_TSMC

TRANSISTOR PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM	0.27/0.18			
Vth		0.50	-0.53	volts
SHORT	20.0/0.18			
Idss		571	-266	uA/um
Vth		0.51	-0.53	volts
Vpt		4.7	-5.5	volts
WIDE	20.0/0.18			
Ids0		22.0	-5.6	pA/um
LARGE	50/50			
Vth		0.42	-0.41	volts
Vjbkd		3.1	-4.1	volts
Ijlk		<50.0	<50.0	pΑ
K' (Uo*Cox/2)		171.8	-36.3	uA/V^2
Low-field Mobility		398.02	84.10	cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameters XL and XW in your SPICE model card.

FOX TRANSISTORS	GATE	N+ACTIVE	P+ACTIVE	UNITS
Vth	Poly	>6.6	<-6.6	volts

PROCESS PARAMETERS → Sheet Resistance → Contact Resistance	N+ 6.6 10.1	P+ 7.5 10.6			+BL 61.		PLY- 317	+BL	(M1 0.08	M2 0.08 4.18		
PROCESS PARAMETERS Sheet Resistance Contact Resistance	M3 0.08 8.97	POLY_ 991	•		14 .08 .09	1	M5 0.0 18.8	8		M6 0.01 1.44	N_W 941	UNITS ohms/s ohms	sq.
COMMENTS: BLK is silici Note: substrate for p+ is the CAPACITANCE PARAMETE Area (substrate) Area (N+active) Area (P+active) Area (poly) Area (metal1) Area (metal2) Area (metal3) Area (metal4) Area (metal5) Area (r well) Area (d well) Area (no well) Fringe (substrate) Fringe (poly) Fringe (metal2) Fringe (metal3) Fringe (metal3) Fringe (metal4) Fringe (metal5)	n-well ERS N+	P+ 1152	POLY 103 8566 8324	39 54 64	19 21 18 44 61 39	13 14 10 16 38 55 29 35	9 11 7 10 15 40 43 24	8 10 6 7 9 15 37 25 21 23 27 34	3 9 5 7 9 14 36	R_W 574	D_N_W 129	M5P N_W 127	UNITS aF/um^2 aF/um aF/um aF/um aF/um aF/um aF/um
Overlap (P+active)			652										aF/um

T4BK SPICE BSIM3 VERSION 3.1 PARAMETERS

SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8

* DATE: Jan 21/05 * LOT: T4BK WAF: 3004

* Tempera	ati	ure_parameters=[Default						
		SN NMOS (LEVEL	=	49	
+VERSION	=	3.1	TNOM	=	27	TOX	=	4E-9	
+XJ	=	1E-7	NCH	=	2.3549E17	VTH0	=	0.3662648	
+K1	=	0.5802748	K2	=	3.124029E-3	K3	=	1E-3	
+K3B	=	3.3886871	WØ	=	1E-7	NLX	=	1.766159E-7	
+DVTØW	=	0	DVT1W	=	0	DVT2W	=	0	
+DVT0	=	1.2312416	DVT1	=	0.3849841	DVT2	=	0.0161351	
+U0	=	265.1889031	UA	=	-1.506402E-9	UB	=	2.489393E-18	
+UC	=	5.621884E-11	VSAT	=	1.017932E5	A0	=	2	
+AGS	=	0.4543117	B0	=	3.433489E-7	B1	=	5E-6	
+KETA	=	-0.0127714	A1	=	1.158074E-3	A2	=	1	
+RDSW	=	136.5582806	PRWG	=	0.5	PRWB	=	-0.2	
+WR	=	1	WINT	=	0	LINT	=	1.702415E-8	
+XL	=	0	XW	=	-1E-8	DWG	=	-4.211574E-9	
+DWB	=	1.107719E-8	VOFF	=	-0.0948017	NFACTOR	=	2.1860065	
+CIT	=	0	CDSC	=	2.4E-4	CDSCD	=	0	
+CDSCB	=	0	ETA0	=	3.335516E-3	ETAB	=	6.028975E-5	
+DSUB	=	0.0214781	PCLM	=	0.6602119	PDIBLC1	=	0.1605325	
+PDIBLC2	=	3.287142E-3	PDIBLCB	=	-0.1	DROUT	=	0.7917811	
+PSCBE1	=	6.420235E9	PSCBE2	=	4.122516E-9	PVAG	=	0.0347169	
+DELTA	=	0.01	RSH	=	6.6	MOBMOD	=	1	
+PRT	=	0	UTE	=	-1.5	KT1	=	-0.11	
+KT1L	=	0	KT2	=	0.022	UA1	=	4.31E-9	
+UB1	=	-7.61E-18	UC1	=	-5.6E-11	AT	=	3.3E4	
+WL	=	0	WLN	=	1	WW	=	0	
+WWN	=	1	WWL	=	0	LL	=	0	
+LLN	=	1	LW	=	0	LWN	=	1	
+LWL	=	0	CAPMOD	=	2	XPART	=	0.5	
+CGDO	=	8.06E-10	CGS0	=	8.06E-10	CGB0	=	1E-12	
+CJ	=	9.895609E-4	PB	=	0.8	MJ	=	0.3736889	
+CJSW	=	2.393608E-10	PBSW	=	0.8	MJSW	=	0.1537892	
+CJSWG	=	3.3E-10	PBSWG	=	0.8	MJSWG	=	0.1537892	
+CF	=	0	PVTH0	=	-1.73163E-3	PRDSW	=	-1.4173554	
+PK2	=	1.600729E-3	WKETA	=	1.601517E-3	LKETA	=	-3.255127E-3	
+PU0	=	5.2024473	PUA	=	1.584315E-12	PUB	=	7.446142E-25	
+PVSAT	=	1.686297E3	PETA0	=	1.001594E-4	PKETA	=	-2.039532E-3)
alle.									

```
.MODEL CMOSP PMOS (
                                                         = 49
                                                  LEVEL
                                 = 27
                                                  TOX
                                                          = 4E-9
+VERSION = 3.1
                         TNOM
                         NCH
+XJ
        = 1E-7
                                                  VTH0
                                                          = -0.3708038
                                 = 4.1589E17
                         K2
+K1
        = 0.5895473
                                 = 0.0235946
                                                  КЗ
                                                          = 0
+K3B
        = 13.8642028
                                 = 1E-6
                                                  NLX
                         WØ
                                                          = 1.517201E-7
+DVTØW
                         DVT1W
                                 = 0
                                                  DVT2W
        = 0
                                                          = 0
+DVT0
        = 0.7885088
                         DVT1
                                 = 0.2564577
                                                  DVT2
                                                          = 0.1
                                 = 1.049312E-9
+U0
        = 103.0478426
                         UA
                                                  UB
                                                          = 2.545758E-21
+UC
                         VSAT
        = -1E-10
                                 = 1.645114E5
                                                  Α0
                                                          = 1.627879
+AGS
        = 0.3295499
                         B0
                                 = 5.207699E-7
                                                  B1
                                                          = 1.370868E-6
+KETA
        = 0.0296157
                         A1
                                 = 0.4449009
                                                  Α2
                                                          = 0.3
+RDSW
        = 306.5789827
                         PRWG
                                                  PRWB
                                                          = 0.5
                                 = 0.5
+WR
        = 1
                         WINT
                                 = 0
                                                  LINT
                                                          = 2.761033E-8
+XL
                         XW
                                                          = -2.433889E-8
        = 0
                                 = -1E-8
                                                  DWG
+DWB
        = -9.34648E-11
                         VOFF
                                 = -0.0867009
                                                  NFACTOR = 2
+CIT
                         CDSC
                                 = 2.4E-4
        = 0
                                                  CDSCD
                                                          = 0
+CDSCB
                         ETA0
                                 = 1.018318E-3
                                                  ETAB
                                                          = -3.206319E-4
        = 0
+DSUB
                         PCLM
                                                  PDIBLC1 = 2.394169E-3
        = 1.094521E-3
                                 = 1.3281073
+PDIBLC2 = -3.255915E-6
                         PDIBLCB = -1E-3
                                                  DROUT
                                                          = 0
                         PSCBE2 = 5E-10
+PSCBE1 = 4.881933E10
                                                  PVAG
                                                          = 2.0932623
                          RSH
                                                   MOBMOD = 1
+DELTA
         = 0.01
                                  = 7.5
+PRT
         = 0
                          UTE
                                  = -1.5
                                                   KT1
                                                           = -0.11
+KT1L
                          KT2
                                                   UA1
         = 0
                                  = 0.022
                                                           = 4.31E-9
+UB1
                          UC1
                                  = -5.6E-11
                                                   ΑT
                                                           = 3.3E4
         = -7.61E-18
+WL
         = 0
                          WLN
                                  = 1
                                                   WW
                                                           = 0
+WWN
                          WWL
                                                   LL
                                                           = 0
         = 1
                                  = 0
+LLN
         = 1
                          LW
                                                           = 1
                                  = 0
                                                   LWN
+LWL
                          CAPMOD = 2
                                                   XPART
                                                           = 0.5
         = 0
+CGDO
        = 6.52E-10
                                  = 6.52E-10
                                                   CGBO
                                                           = 1E-12
                          CGS0
+CJ
        = 1.157423E-3
                          PB
                                  = 0.8444261
                                                   MJ
                                                           = 0.4063933
+CJSW
                                                   MJSW
                                                           = 0.3550788
         = 1.902456E-10
                          PBSW
                                  = 0.8
+CJSWG
         = 4.22E-10
                          PBSWG
                                                   MJSWG
                                                           = 0.3550788
                                  = 0.8
                          PVTH0
                                  = 1.4398E-3
                                                           = 0.5073407
+CF
         = 0
                                                   PRDSW
+PK2
         = 2.190431E-3
                                  = 0.0442978
                                                   LKETA
                          WKETA
                                                           = -2.936093E-3
+PU0
         = -0.9769623
                          PUA
                                  = -4.34529E-11
                                                   PUB
                                                           = 1E-21
+PVSAT
                          PETA0
                                  = 1.002762E-4
                                                   PKETA
                                                           = -6.740436E-3
         = -50
```

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used. Consider both 0.5u and 0.18u processes.

For 0.5u process

SCMOS_SUBM (lambda=0.30) 0.10 0.00 SCMOS (lambda=0.35) 0.00 0.20

FOX TRANSISTORS GATE N+ACTIVE P+ACTIVE UNITS
Vth Poly >15.0 <-15.0 volts

 $R_{SH}=23.5\Omega/\Box$

PLY2 HR PROCESS PARAMETERS N+POLY2 М1 M2 105.3 23.5 44.2 0.10 Sheet Resistance 83.5 999 0.09 ohms/s Contact Resistance 64.9 149.7 29.2 0.97 onms Gate Oxide Thickness 142 angstrom

 PROCESS PARAMETERS
 M3 N\PLY N_W
 UNITS

 Sheet Resistance
 0.05 824 816 ohms/sq

 Contact Resistance
 0.79 ohms

COMMENTS: N\POLY is N-well under polysilicon.

C_{DPS}=84 af/µ² N_W UNITS aF/um²

Note: substrate for p+ is the n-well

CAPACITANCE PARAMETERS	N+	P+	POLY	POLY2	M1	M2	мз	N W	UNITS
Area (substrate)	425	731	84		27	12	7	_37	aF/um^2
Area (N+active)			2434		35	16	11		ar/um2
Area (P+active)			2335						aF/um^2
Area (poly)				938	56	15	9		aF/um^2
Area (poly2)					49				aF/um^2
Area (metal1)						31	13		aF/um^2
Area (metal2)							35		aF/um^2
Fringe (substrate)	344	238			49	33	23		aF/um
Fringe (poly)					59	38	28		aF/um
Fringe (metal1)						51	34		aF/um
Fringe (metal2)							52		aF/um
Overlap (N+active)			232						aF/um
Overlap (P+active)			312						aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	2.02	volts
Vinv	1.5	2.28	volts
Vol (100 uA)	2.0	0.13	volts

For 0.5u process

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used.

$$n_{sQ} = \frac{800\mu}{0.6\mu} = 1333$$
 $A=(0.6\mu)(800\mu) = 480\mu^2$

$$R_{POLY} = n_{SQ} R_{SH} = 23.5 \cdot 1333 = 31.3 \text{K}\Omega$$

$$C_{P-SUB} = A \cdot C_{DPS} = 480 \mu^2 \cdot 84a F \mu^{-2} = 40.3 fF$$

For 0.18u process

PROCESS PARAMETERS	N+	P+			N+E			Y+B		M1		M2		NITS
Sheet Resistance	6.0		.5 (7.)		61	1.0	3	17.	1	0.0		.08		hms/so
Contact Resistance	10.	1 10	.6 9.	3							4	.18	ol	$R_{SH} = 7.7\Omega/\Box$
PROCESS PARAMETERS	МЗ	POL'	Y_HRI		M4		1	M5		M6	N	_W		UNITS
Sheet Resistance	0.08	9	91.5		0.0	8	0	.08		0.0	1	941		ohms/sq
Contact Resistance	8.97			1	4.0	9	18	. 84		21.4	4			ohms
COMMENTS: BLK is silici Note: substrate for p+ is the n-w	de blo /ell	ck.												C_{DPS} =103 af/ μ^2
CAPACITANCE PARAMETERS		P+	POLY	M1	M2	МЗ	Μ4	M5	М6	R W	D N	W N	15P	N W UNITS
Area (substrate)	998	1152	103	39	19	13	9	8	3	_	12	9		127 aF/um^2
Area (N+active)			8566	54	21	14	11	10	9					aF/um^2
Area (P+active)			8324											aF/um^2
Area (poly)				64	18	10	7	6	5					aF/um^2
Area (metal1)					44	16	10	7	5					aF/um^2
Area (metal2)						38	15	9	7					aF/um^2
Area (metal3)							40	15	9					aF/um^2
Area (metal4)								37	14					aF/um^2
Area (metal5)									36			10	903	aF/um^2
Area (r well)	987													aF/um^2
Area (d well)										574				aF/um^2
Area (no well)	139													aF/um^2
Fringe (substrate)	244	201		18	61	55	43	25						aF/um
Fringe (poly)				69	39	29	24	21	19					aF/um
Fringe (metal1)					61	35		23	21					aF/um
Fringe (metal2)						54	37	27	24					aF/um
Fringe (metal3)							56	34	31					aF/um
Fringe (metal4)								58	40					aF/um
Fringe (metal5)									61					aF/um
Overlap (P+active)			652											aF/um

For 0.18u process

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M₁ were used.

$$n_{sQ} = \frac{800\mu}{0.6\mu} = 1333$$
 $A=(0.6\mu)(800\mu) = 480\mu^2$

$$R_{POLY} = n_{SQ} R_{SH} = 7.7 \cdot 1333 = 10.3 K\Omega$$

$$C_{P-SUB} = A \cdot C_{DPS} = 480 \mu^2 \cdot 103 a F \mu^{-2} = 49.4 f F$$

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used. Do this for both a 0.5u and a 0.18u process.

For 0.5u process

SCMOS_SUBM (lambda=0.30) 0.10 0.00 SCMOS (lambda=0.35) 0.00 0.20

FOX TRANSISTORS GATE N+ACTIVE P+ACTIVE UNITS
Vth Poly >15.0 <-15.0 volts

 $R_{SH}=0.09\Omega/\Box$

PLY2 HR PROCESS PARAMETERS P+ POLY POLY2 M2 N+ 999 44.2 Sheet Resistance 83.5 105.3 23.5 0.09 0.10 ohms/s 29.2 Contact Resistance 64.9 149.7 17.3 0.97 Gate Oxide Thickness 142 angstrom

 PROCESS PARAMETERS
 M3
 N\PLY
 N_W
 UNITS

 Sheet Resistance
 0.05
 824
 816
 ohms/sq

 Contact Resistance
 0.79
 ohms

COMMENTS: N\POLY is N-well under polysilicon.

C_{DPS}=27 af/µ² N_W UNITS aF/um²

Note: substrate for p+ is the n-well

CAPACITANCE PARAMETERS	N+	P+	POLY	POLY2	M1	M2	М3	N_W	UNITS
Area (substrate)	425	731	84		27	12	7	37	aF/um^2
Area (N+active)			2434		35	16	11		ar/um2
Area (P+active)			2335						aF/um^2
Area (poly)				938	56	15	9		aF/um^2
Area (poly2)					49				aF/um^2
Area (metal1)						31	13		aF/um^2
Area (metal2)							35		aF/um^2
Fringe (substrate)	344	238			49	33	23		aF/um
Fringe (poly)					59	38	28		aF/um
Fringe (metal1)						51	34		aF/um
Fringe (metal2)							52		aF/um
Overlap (N+active)			232						aF/um
Overlap (P+active)			312						aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	2.02	volts
Vinv	1.5	2.28	volts
Vol (100 uA)	2.0	0.13	volts

For 0.5u process

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M₁ were used.

$$R_{M1} = n_{SQ} R_{SH} = 0.09 \cdot 1333 = 120 \Omega$$

$$C_{M1-SUB} = A \cdot C_{DM1S} = 480 \mu^2 \cdot 27 a F \mu^{-2} = 13.0 f F$$

For 0.18u process

PROCESS PARAMETERS	N+	P+	POL		N+BI			+BL		M1		M2		HS.	
Sheet Resistance	6.6				61	.0	31	17.1	L	0.08		.08		ms/sq)
Contact Resistance	10.1	10.	6 9.3	1							4	.18	oh	ms	$R_{\rm SH} = 0.08\Omega/1$
PROCESS PARAMETERS	М3	POL	/_HRI		Μ4			45		M6)	N_W		UNIT	
Sheet Resistance	0.08	99	91.5		0.0	8	0	. 08		0.0	1	943	1	ohms	/sq
Contact Resistance	8.97			1	4.0	9	18	. 84		21.4	4			ohms	
COMMENTS: BLK is silicio	de blo	ock.												C_{DP}	_s =39 af/µ²
Note: substrate for p+ is the n- CAPACITANCE PARAMETERS	weii N+	P+	POLY	М1	M2	МЗ	М4	M5	М6	R W	D N	W	M5P		UNITS
Area (substrate)		1152	103		_				3	··_•		_ 29	1131		aF/um^2
Area (N+active)	,,,,	1102	8566				11		9					12,	aF/um^2
Area (P+active)			8324												aF/um^2
Area (poly)				64	18	10	7	6	5						aF/um^2
Area (metal1)					44	16	10	7	5						aF/um^2
Area (metal2)						38	15	9	7						aF/um^2
Area (metal3)							40	15	9						aF/um^2
Area (metal4)								37	14						aF/um^2
Area (metal5)									36			1	L003		aF/um^2
Area (r well)	987														aF/um^2
Area (d well)										574					aF/um^2
Area (no well)	139														aF/um^2
Fringe (substrate)	244	201		18	61	55	43	25							aF/um
Fringe (poly)				69	39	29	24	21	19						aF/um
Fringe (metal1)					61	35			21						aF/um
Fringe (metal2)						54	37	27	24						aF/um
Fringe (metal3)							56	34	31						aF/um
Fringe (metal4)								58	40						aF/um
Fringe (metal5)									61						aF/um
Overlap (P+active)			652												aF/um

For 0.18u process

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used.

$$R_{M1} = n_{SQ} R_{SH} = 0.08 \cdot 1333 = 107 \Omega$$

$$C_{\text{\tiny M1-SUB}} = A \cdot C_{\text{\tiny DM1S}} = 480 \mu^2 \cdot 39 a F \mu^{-2} = 18.7 fF$$

Compare the resistance and capacitance of a n+ diffusion interconnect that is 0.6u wide and 800u long with what would be obtained with a Poly and a M_1 interconnet. Assume a 0.5u process.

For 0.5u process

SCMOS_SUBM (lambda=0.30) SCMOS (lambda=0.35) 0.10 0.00 0.00 0.20

FOX TRANSISTORS GATE N+ACTIVE P+ACTIVE UNITS
Vth Poly >15.0 <-15.0 volts

 $R_{SH}=83.5\Omega/\Box$

POLY PLY2 HR PROCESS PARAMETERS P+ POLY2 М1 M2 Sheet Resistance 83.5 0.10 105.3 23.5 999 44.2 0.09 ohms/s Contact Resistance 64.9 149.7 17.3 29.2 0.97 onms Gate Oxide Thickness 142 angstrom

 PROCESS PARAMETERS
 M3
 N\PLY
 N_W
 UNITS

 Sheet Resistance
 0.05
 824
 816
 ohms/sq

 Contact Resistance
 0.79
 ohms

COMMENTS: N\POLY is N-well under polysilicon.

C_{DPS}=425 af/µ² N_W UNITS aF/um²

CAPACITANCE PARAMET	ERS N+	P+	POLY	POLY2	M1	M2	мз	N W	UNITS
Area (substrate)	425	731	84		27	12	7	_37	aF/um^2
Area (N+active)			2434		35	16	11		ar/um2
Area (P+active)			2335						aF/um^2
Area (poly)				938	56	15	9		aF/um^2
Area (poly2)					49				aF/um^2
Area (metal1)						31	13		aF/um^2
Area (metal2)							35		aF/um^2
Fringe (substrate)	344	238			49	33	23		aF/um
Fringe (poly)					59	38	28		aF/um
Fringe (metal1)						51	34		aF/um
Fringe (metal2)							52		aF/um
Overlap (N+active)			232						aF/um
Overlap (P+active)			312						aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	2.02	volts
Vinv	1.5	2.28	volts
Vol (100 uA)	2.0	0.13	volts

Compare the resistance and capacitance of a n+ diffusion interconnect that is 0.6u wide and 800u long with what would be obtained with a Poly and a M₁ interconnet. Assume a 0.5u process.

Comparison of 3 types of interconnects

		Poly 1	M1	Diff
	R	10.3K	107	8.8K
0.18 u	С	49.4fF	18.7fF	479fF
	R	31.3K	120	111K
0.5u	С	40.3fF	13fF	204fF

Stay Safe and Stay Healthy!

End of Lecture 11